

RESEARCH ARTICLE

Some Basic Results in ν -Normed Spaces

M. Rohman^{*†} and İ. Eryılmaz[‡]

†Madrasah Ibtidaiyah Teacher Education, School of Islamic Studies Ma'had Aly Al-Hikam Malang, Indonesia. ‡Department of Mathematics, Faculty of Science, Ondokuz Mayıs Üniversitesi, Türkiye. *Corresponding author. Email: minanurrohmanali@gmail.com

Abstract

In this paper, we introduce the notion of a directed preserving generator (d.p.g.) from \mathbb{R} into \mathbb{R} . This d.p.g. can be used to construct new fields which generally have the same properties as R, except that some properties are affected by d.p.g. itself. With this new field, a ν -normed space will be formed. Some of the basic properties of this normed space are also discussed.

Keywords: field, normed space, Banach space, bounded operator.

1. Introduction

Sometimes we can discover new things by changing our point of view of something. Classical Banach spaces are defined as a complete normed space over the field \mathbb{R} or \mathbb{C} . In this paper, we will use a new field called ν -non-Newtonian field $\nu\mathbb{R}$ which has similar properties to \mathbb{R} . Using this $\nu\mathbb{R}$ which will be constructed in this section, then we can define ν -non-Newtonian normed spaces over ν -non-Newtonian field $\nu\mathbb{R}$. To simplify, we will just state the function needed. So, if the function is ν , the notion ν -normed spaces over a field $\nu\mathbb{R}$ will be used if it is not ambiguous.

This change in point of view was started by Grossman and Katz by moving the field \mathbb{R} by using a function called a generator. A function $\alpha : \mathbb{R} \to \mathbb{R}$ is called a generator function if it is an injective function [9]. Many studies have used generators with this definition in several fields such as calculus [1], α -fixed point theory [2, 3], and some special α -Banach spaces [4, 5, 6, 7, 8, 10, 11]. Unfortunately, the injective nature of this generator is not strong enough to guarantee that the field $\alpha \mathbb{R}$ generated by α has similar properties as its counterpart \mathbb{R} . Therefore, we define the stronger generator as follows.

Definition 1. A function $v : \mathbb{R} \to \mathbb{R}$ is called a directed preserving generator (g.d.p) if the function v satisfies the following conditions: (i) one-one and continue, (ii) for any $a, b \in \mathbb{R}$ and a < b, we have $v(a) \leq v(b)$ in $\sqrt{\mathbb{R}}$, and

(ii) for any $a, b \in \mathbb{R}$ and $a \leq b$, we have $\nabla(a) \leq \nabla(b)$ in $\nabla \mathbb{R}$, and (iii) for any $a, b \in \mathbb{R}$, there exists $\nabla(c) \in \nabla \mathbb{R}$ such that $\nabla(a) \leq \nabla(c)$ and $\nabla(b) \leq \nabla(c)$ in $\nabla \mathbb{R}$.

The existence of $c \in \mathbb{R}$ in (*iii*) is just the implication of (*i*) and (*ii*). Using this new definition, the function $\alpha : \mathbb{R} \to \mathbb{R}$ which is defined as

$$\alpha(x) = \begin{cases} 0, & \text{if } x = 0 \\ \frac{1}{x}, & \text{otherwise} \end{cases}$$

is a generator that fails to be a g.d.p.

2 M. Rohman *et al.*

The continuity of g.d.p. ν will guarantee the existence of $\dot{0}$ and $\dot{1}$, where $\dot{0}$ and $\dot{1}$ respectively denote the addition identity and multiplication identity, i.e., $\nu(0) = \dot{0}$ and $\nu(1) = \dot{1}$. In the case $\nu = exp$, clearly $\dot{0} = 1$ and $\dot{1} = e$. The property (*ii*) of d.p.g. ensures that the order in $\nu \mathbb{R}$ does not reverse the original order in \mathbb{R} , while (*iii*) ensures that there is always an element in $\nu \mathbb{R}$ greater than $\nu(a), \nu(b) \in \nu \mathbb{R}$, i.e., the elements of $\nu \mathbb{R}$ (depend on g.d.p. ν) are going to $-\infty$ and $+\infty$.

Before going any further, for any \dot{a} , $\dot{b} \in \sqrt{\mathbb{R}}$, the arithmetics applied in a set of scalars $\sqrt{\mathbb{R}}$ is defined as follows

$$\dot{a} + b = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) + \mathbf{v}^{-1} \left(b \right) \right)$$
$$\dot{a} - \dot{b} = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) - \mathbf{v}^{-1} \left(\dot{b} \right) \right)$$
$$\dot{a} \times \dot{b} = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) \times \mathbf{v}^{-1} \left(\dot{b} \right) \right)$$
$$\dot{a} / \dot{b} = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) / \mathbf{v}^{-1} \left(\dot{b} \right) \right)$$
$$\dot{a} = \mathbf{v} \left(\left| \mathbf{v}^{-1} \left(\dot{a} \right) \right| \right) = \begin{cases} \dot{a} & , \text{ if } \dot{a} \neq \dot{0} \\ \dot{0} - \dot{a}, \text{ if } \dot{a} \neq \dot{0} \\ \dot{0} - \dot{a}, \text{ if } \dot{a} \neq \dot{0} \end{cases}$$
$$\dot{\sqrt{a^2}} = \dot{a} \dot{a}$$
$$\dot{a}^{\dot{p}} = \mathbf{v} \left(\left[\mathbf{v}^{-1} \left(\dot{a} \right) \right]^p \right)$$

Using these arithmetics, for any \dot{a} , \dot{b} , $\dot{c} \in {}_{\mathcal{V}}\mathbb{R}$ and a d.p.g. ν we have

$$\begin{split} \dot{a} \div \left(\dot{b} \div \dot{c} \right) &= \nu \left(\nu^{-1} \left(\dot{a} \right) + \nu^{-1} \left(\dot{b} \div \dot{c} \right) \right) \\ &= \nu \left(\nu^{-1} \left(\dot{a} \right) + \nu^{-1} \left[\nu \left(\nu^{-1} \left(\dot{b} \right) + \nu^{-1} \left(\dot{c} \right) \right) \right] \right) \\ &= \nu \left(\nu^{-1} \left(\dot{a} \right) + \nu^{-1} \left(\dot{b} \right) + \nu^{-1} \left(\dot{c} \right) \right) \\ &= \nu \left(\nu^{-1} \left[\nu \left(\nu^{-1} \left(\dot{a} \right) + \nu^{-1} \left(\dot{b} \right) \right) \right] + \nu^{-1} \left(\dot{c} \right) \right) \\ &= \nu \left(\nu^{-1} \left[\dot{a} \div \dot{b} \right] + \nu^{-1} \left(\dot{c} \right) \right) \\ &= \left(\dot{a} \div \dot{b} \right) \div \dot{c}, \end{split}$$

and

$$\dot{a} \dot{+} \dot{0} = \nu \left(\nu^{-1} \left(\dot{a} \right) + \nu^{-1} \left(\dot{0} \right) \right)$$

$$= \nu \left(\nu^{-1} \left(\dot{a} \right) + 0 \right)$$

$$= \nu \left(\nu^{-1} \left(\dot{a} \right) \right) = \dot{a}.$$

Similarly, it is easy to see that ${}_{\mathcal{V}}\mathbb{R}$ is an abelian group under addition. Since

$$\dot{a} \times \dot{1} = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) \times \mathbf{v}^{-1} \left(\dot{1} \right) \right) = \mathbf{v} \left(\mathbf{v}^{-1} \left(\dot{a} \right) \right) = \dot{a}$$

and

$$\begin{split} \dot{a} \dot{\times} \quad \left(\dot{b} \dot{+} \dot{c} \right) &= \nu \left(\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left(\dot{b} \dot{+} \dot{c} \right) \right) \\ &= \nu \left(\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left[\nu \left(\nu^{-1} \left(\dot{b} \right) + \nu^{-1} \left(\dot{c} \right) \right) \right] \right) \\ &= \nu \left(\left[\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left(\dot{b} \right) \right] + \left[\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left(\dot{c} \right) \right] \right) \\ &= \nu \left(\nu^{-1} \left[\nu \left(\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left(\dot{b} \right) \right) \right] + \nu^{-1} \left[\nu \left(\nu^{-1} \left(\dot{a} \right) \times \nu^{-1} \left(\dot{c} \right) \right) \right] \right) \\ &= \nu \left(\nu^{-1} \left[\dot{a} \dot{\times} \dot{b} \right] + \nu^{-1} \left[\dot{a} \dot{\times} \dot{c} \right] \right) \\ &= \left[\dot{a} \dot{\times} \dot{b} \right] \dot{+} \left[\dot{a} \dot{\times} \dot{c} \right] , \end{split}$$

some routine calculations will show that $\nu \mathbb{R}$ is a field. Indeed, the properties of d.p.g. assure that $\nu \mathbb{R}$ is a complete field. Therefore, $\nu \mathbb{R}$ can be used to form a new kind of normed space.

2. ν -Normed spaces

The previous section shows that there are new fields that can be formed from \mathbb{R} . If we can find an isomorphism from \mathbb{R} onto $_{\nu}\mathbb{R}$, then we can form ν -normed spaces over $_{\nu}\mathbb{R}$.

Let ν and μ be d.p.g. and define an isomorphism $\iota : \mu \mathbb{R} \to \nu \mathbb{R}$ as $\iota(x) = \nu(\mu^{-1}(x))$. Then for any $\dot{a}, \dot{b} \in \mu \mathbb{R}$

$$\begin{split} \iota\left(\dot{a}\dot{+}\dot{b}\right) &= \nu\left(\mu^{-1}\left(\dot{a}\dot{+}\dot{b}\right)\right) \\ &= \nu\left(\mu^{-1}\left[\mu\left(\mu^{-1}\left(\dot{a}\right)+\mu^{-1}\left(\dot{b}\right)\right)\right]\right) \\ &= \nu\left(\mu^{-1}\left(\dot{a}\right)+\mu^{-1}\left(\dot{b}\right)\right) \\ &= \nu\left(\mu^{-1}\left(\dot{a}\right)\right) \ddot{+}\nu\left(\mu^{-1}\left(\dot{a}\right)\right) \\ &= \iota\left(\dot{a}\right)\ddot{+}\iota\left(\dot{b}\right) \end{split}$$

and

$$\begin{split} \mathfrak{u}\left(\dot{a}\dot{\times}\dot{b}\right) &= \nu\left(\mu^{-1}\left(\dot{a}\dot{\times}\dot{b}\right)\right) \\ &= \nu\left(\mu^{-1}\left[\mu\left(\mu^{-1}\left(\dot{a}\right)\times\mu^{-1}\left(\dot{b}\right)\right)\right]\right) \\ &= \nu\left(\mu^{-1}\left(\dot{a}\right)\times\mu^{-1}\left(\dot{b}\right)\right) \\ &= \nu\left(\mu^{-1}\left(\dot{a}\right)\right)\ddot{\times}\nu\left(\mu^{-1}\left(\dot{a}\right)\right) \\ &= \iota\left(\dot{a}\right)\ddot{\times}\iota\left(\dot{b}\right). \end{split}$$

Since $\mu \mathbb{R}$ and $\nu \mathbb{R}$ are fields, we have $\iota(\dot{a}-\dot{b}) = \iota(\dot{a})-\iota(\dot{b})$ and $\iota(\dot{a}/\dot{b}) = \iota(\dot{a})/\iota(\dot{b})$ for any $\dot{b} \neq \dot{0}$. Considering the properties of d.p.g. ν and μ , we conclude that $\iota(x)$ is a field isomorphism. If μ is an identity mapping, i.e. $\mu(x) = x$, and ν be any d.p.g, then ι is an isomorphism from \mathbb{R} onto $\nu \mathbb{R}$. Now we are ready to discuss v-normed space X. Using the isomorphism defined above, for any $x, y \in X$ we have

 $\iota \left(\lambda ||x|| + ||y|| \right) = \lambda \dot{\times} \dot{||x||} \dot{+} \dot{||y||}.$

Therefore, the followings are hold (i) $||x|| \doteq 0$ implies $||x|| = t^{-1} (||x||) = t^{-1} (0) = t^{-1} (v (0)) = 0$ and by the classical normed space rule we get $x = 0 \in X$. On the contrary, for x = 0, ||0|| = t (||0||) = 0, (ii) $||\lambda \times x|| \doteq t (||\lambda x||) \doteq t (|\lambda| ||x||) \doteq |\lambda| \times t (||x||) = |\lambda| \times ||x||$, (iii) $||x + y|| \doteq t (||x + y||) \le t (||x|| + ||y||) = ||x|| + ||y||$.

These facts give the following definition

Definition 2. Let X be a vector space over the field ${}_{\nu}\mathbb{R}$. The function $\|\cdot\|: X \to {}_{\nu}\mathbb{R}^+$ is called a ν -norm on X if it satisfies (i) $\|\dot{x}\| \stackrel{i}{\geq} \dot{0}$ and $\|\dot{x}\| \stackrel{i}{=} \dot{0}$ if and only if x = 0, (ii) $\|\dot{\lambda} \stackrel{i}{\times} x\| \stackrel{i}{=} \|\dot{\lambda}\| \stackrel{i}{\times} \|x\|$, (iii) $\|\dot{x} \stackrel{i}{\times} y\| \stackrel{i}{\leq} \|x\| \stackrel{i}{=} \|y\|$ for all $x, y \in X$ and $\lambda \in {}_{\nu}\mathbb{R}$. The ordered pair $(X, \|\cdot\|)$ is called ν -normed space.

If the context being discussed is clear, then X will be preferred over $(X, \|\cdot\|)$. By using property (iii) in the definition or directly using the isomorphism ι , for all $x, y \in X$ we have

$$\dot{||}x\dot{||} \doteq \iota (||x||) \leq \iota (||x - y|| + ||y||) = \dot{||}x - y\dot{||} + \dot{||}y\dot{||}.$$

Similarly

$$||y|| = \iota(||y||) \le \iota(||y-x|| + ||x||) = ||x-y|| + ||x||$$

Therefore

$$\begin{aligned} \dot{|} \, \dot{|} x \dot{|} \dot{-} \dot{|} y \dot{|} \, \dot{|} &\doteq \max \left\{ \dot{|} x \dot{|} \dot{-} \dot{|} y \dot{|}, \, \dot{|} y \dot{|} \dot{-} \dot{|} x \dot{|} \right\} \\ &\leq \dot{|} x \dot{-} y \dot{|}. \end{aligned}$$

The last inequality shows that the function $x \mapsto ||x||$ is a ν -continuous function. Furthermore, for any $x, x_0, y, y_0 \in X$ and $\lambda, \lambda_0 \in {}_{\mathcal{V}}\mathbb{R}$

$$\parallel (x + \gamma) - (x_0 + \gamma_0) \parallel \leq \parallel x - x_0 \parallel + \parallel \gamma - \gamma_0 \parallel$$

and

$$\begin{aligned} \dot{\|}\lambda x \dot{-}\lambda_0 x_0 \dot{\|} & \leq & \dot{\|}\lambda x \dot{-}\lambda x_0 \dot{\|} \dot{+} \dot{\|}\lambda x_0 \dot{-}\lambda_0 x_0 \dot{\|} \\ & = & \dot{|}\lambda \dot{|} \dot{\times} \dot{\|} x \dot{-} x_0 \dot{\|} \dot{+} \dot{\|} x_0 \dot{\|} \dot{|}\lambda \dot{-} \lambda_0 \dot{|}. \end{aligned}$$

The continuity of a v-norm function implies that the mappings $(x, y) \mapsto x + y$ and $(\lambda, y) \mapsto \lambda \times y$ are v-continuous from X into X. After knowing the v-continuity of these mappings, it is natural to define the convergence of sequences in v-normed spaces. Note that while discussing some concepts related to sequences, since we use N as a directed set, it must be understood that the natural numbers being used are in the original order, not as outputs of d.p.g. v. **Definition 3.** Let (x_n) be a sequence in ν -normed space X. The sequence (x_n) is said to be ν -Cauchy if for any $\dot{\epsilon} \dot{>} \dot{0}$, there is $N_{\dot{\epsilon}} \in \mathbb{N}$ such that $||x_n \dot{-} x_m|| \dot{<} \dot{\epsilon}$ whenever $n, m \geq N_{\dot{\epsilon}}$. The sequence $(x_n) \nu$ -converges to an element $x \in X$ if for any $\dot{\epsilon} \dot{>} \dot{0}$, there is $N_{\dot{\epsilon}} \in \mathbb{N}$ such that $||x_n \dot{-} x_n|| \dot{<} \dot{\epsilon}$ whenever $n \geq N_{\dot{\epsilon}}$. In this case, x is called ν -limit point of (x_n) and denoted by ν -lim $(x_n) = x$.

The previous discussions show that we can use the ν -norm function to form the topology for a vector space X with $\mathbb{F} = {}_{\nu}\mathbb{R}$. The elements of this ν -norm topology are any neighborhoods of $x \in X$.

Definition 4. Let X be ν -normed space and $x \in X$. The closed ball centered at x with a radii $\dot{r} > \dot{0}$ is the set $\{\gamma \in X : ||\dot{x} - \dot{\gamma}|| \le \dot{r}\}$ and the open ball is the set $\{\gamma \in X : ||\dot{x} - \dot{\gamma}|| \le \dot{r}\}$. The sphere with a center at x and a radii \dot{r} is the set $\{\gamma \in X : ||\dot{x} - \dot{\gamma}|| \le \dot{r}\}$.

If x = 0 and $\dot{r} = 1$, then they are called a unit closed ball, unit open ball, and unit sphere which are respectively denoted by \sqrt{B}_X , \sqrt{B}_X , and \sqrt{S}_X .

Definition 5. A ν -normed space is ν -Banach (complete) space if any ν -Cauchy sequence in $X \nu$ converges to an element $x \in X$.

Çakmak and Başar [4] showed that some sequence spaces of scalars are Banach space with d.p.g. v = exp. As stated before, this result generally doesn't hold for any generator, unless satisfies d.p.g. conditions.

Let X be a vector space over a field $_{\nu}\mathbb{R}$, $A \subset X$, $x, y \in A$, and $\lambda \in _{\nu}\mathbb{R}$. If $\lambda \in (0, 1)$ and $\lambda x \neq (1-\lambda) y \in A$, then A is called a *convex set*. A is a *balanced set* if for any $|\lambda| \leq 1$, we have $\lambda A \subset A$. If for any $z \in X$, there is $\lambda_z > 0$ such that $z \in \beta A$ whenever $\beta > \lambda_z$, then A is called *absorbing*.

Proposition 1. Any ball in a ν -normed space is convex. Furthermore, if the ball is centered at the origin, then the ball is balanced and absorbing.

Proof. Let $_{\mathcal{V}}B_r(x)$ be any ball centered at x with a radius r. Take any $\gamma, z \in _{\mathcal{V}}B_r(x)$ and $0 < \lambda < 1$, then

$$\begin{aligned} \dot{\|}\lambda\gamma \dot{+} (\dot{1} \dot{-}\lambda) z \dot{-}x\dot{\|} &\doteq \dot{\|}\lambda\gamma \dot{+} (\dot{1} \dot{-}\lambda) z \dot{-}\lambdax \dot{-} (\dot{1} \dot{-}\lambda) x\dot{\|} \\ &\doteq \dot{\|}\lambda (\gamma \dot{-}x) \dot{+} (\dot{1} \dot{-}\lambda) (z \dot{-}x) \dot{\|} \\ &\leq \lambda \dot{\|} (\gamma \dot{-}x) \dot{\|} \dot{+} (\dot{1} \dot{-}\lambda) \dot{\|} (z \dot{-}x) \dot{\|} \\ &\leq \lambda \dot{r} \dot{+} (\dot{1} \dot{-}\lambda) \dot{r}. \end{aligned}$$

Therefore, $\lambda \gamma + (\dot{1} - \lambda) z \in {}_{\nu}B_{\dot{r}}(x)$.

Now, take a ball $_{\nu}B_{\dot{r}}(0)$ and $\dot{\lambda}\dot{l}\dot{\leq}\dot{1}$. Then, for any $\gamma \in _{\nu}B_{\dot{r}}(0)$, we get $\dot{\|}\lambda\gamma\dot{\|}\dot{\leq}\dot{\|}\gamma\dot{\|}$ and hence $\lambda\gamma \in _{\nu}B_{\dot{r}}(0)$. This shows that $_{\nu}B_{\dot{r}}(0)$ is a balanced set. Indeed, for any $x \in X$ and $\beta \stackrel{\dot{\|}x\dot{\|}}{\dot{r}}$, then $x \in \beta_{\nu}B_{\dot{r}}(0)$. Thus $_{\nu}B_{\dot{r}}(0)$ is absorbing.

Let A be any subset of a ν -normed space X. The closure of A, denoted by \overline{A} , is an intersection of all closed sets in X containing A. It is well known that \overline{A} contains all ν -limit points. Since for any $x, y \in X$ and $x \neq y$, we can find $\dot{r} \ge 0$ such that $\nu B_{\dot{r}}(x) \cap \nu B_{\dot{r}}(y) = \emptyset$ which shows that ν -norm topology is Hausdorff, and the ν -limit point is unique. The interior of A is the union of all open subsets of A, i.e., the largest open set containing A and denote by A° .

Proposition 2. Let A be any convex subset of a ν -normed space X. Then \overline{A} and A° are convex sets.

Proof. Let $x, y \in \overline{A}$, $x_n \to x$ and $y_n \to y$. Then, for any $\lambda \in (\dot{0}, \dot{1})$

$$\|\lambda x + (\dot{1} - \lambda) \gamma - \lambda x_n + (\dot{1} - \lambda) \gamma_n \| \leq \lambda \| x - x_n \| + (\dot{1} - \lambda) \| \gamma - \gamma_n \|$$

and hence $\lambda x_n \neq (\dot{1} \rightarrow \lambda) y_n \rightarrow \lambda \gamma \neq (\dot{1} \rightarrow \lambda) x$. Therefore, $\lambda \gamma \neq (\dot{1} \rightarrow \lambda) x \in \overline{A}$ which shows that \overline{A} is a convex set.

Now, let $x, y \in A^{\circ}$. Then, for any $\lambda \in (\dot{0}, \dot{1})$

$$\lambda x \dot{+} (\dot{1} \dot{-} \lambda) \gamma \in \lambda A^{\circ} \dot{+} (\dot{1} \dot{-} \lambda) A^{\circ} \subset A.$$

Since *A* is a convex set, it follows that A° is convex.

3. Bounded operators

This section will discuss the mappings between ν -normed space X and Y. It is well known that a mapping $T: X \to Y$ is linear if T(x+y) = Tx+Ty and $T(\lambda x) = \lambda T(x)$ for any $x, y \in X$ and $\lambda \in \sqrt{\mathbb{R}}$. From elementary calculus, the mapping $f: X \to Y$ is said to be continuous if, for an arbitrary $\varepsilon > 0$, there is $\delta = \delta_{\varepsilon} > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$. Since we can form a ν -norm topology for ν -normed spaces X and Y, we can define the continuous linear operator as in the following definition.

Definition 6. Let X and Y be ν -normed spaces and $T : X \to Y$ be a linear operator. T is a continuous operator if it is continuous between X and Y, where X and Y are considered topological spaces under ν -norm topology.

Note that a subset A of a v-normed space X is *bounded* if $||x|| \leq M$ for any $x \in A$ and $M \leq \infty$, i.e. $A \subset {}_{\nu}B_M(0)$ for a large M.

Proposition 3. Let X and Y be ν -normed spaces and $T : X \rightarrow Y$ be a linear operator. The following conditions are equivalent:

(i) T is continuous,
(ii) T is continuous at 0,
(iii) T is uniformly continuous,
(iv) There is a constant M>0 such that

$$||Tx|| \leq M ||x||$$

for all $x \in X$. (v) $T(_{\gamma}B_X)$ is a bounded set in Y.

Proof. (*i*) \rightarrow (*ii*) is obvious.

(*ii*) \rightarrow (*i*). Let (x_n) be any sequence ν -converges to $x \in X$. Since T continuous at 0,

$$\|Tx - Tx_n\| \doteq \|T(x - x_n)\| \to 0,$$

or $Tx_n \to Tx$. Thus, T is a continuous operator.

 $(ii) \rightarrow (iii)$. The linearity and continuity of T at 0 imply that for any $\dot{\epsilon} \dot{>} \dot{0}$, there is $\dot{\delta} = \dot{\delta}_{\dot{\epsilon}} \dot{\epsilon} \dot{>} \dot{0}$ such that $||Tx|| \dot{<} \dot{\epsilon}$ whenever $||x|| \dot{<} \dot{\delta}$. Since X is a ν -normed space, there is $x_1, x_2 \in X$ such that $x_1 = x_2$. Thus, $||Tx_1 - Tx_2|| \dot{<} \dot{\epsilon}$ whenever $||x_1 - x_2|| \dot{<} \dot{\delta}$. Since x is arbitrary and $\dot{\delta}$ just depend on $\dot{\epsilon}$, T is a uniformly continuous operator.

 $(iii) \rightarrow (i)$ is obvious.

(*iii*) \rightarrow (*iv*). $||x|| \dot{\langle} \dot{\delta}$ implies $||Tx|| \dot{\langle} \dot{\epsilon}$. For any $x \in X$, put $\gamma = \frac{\dot{\delta}}{2||x||}x$. Then $||\gamma|| \dot{\langle} \dot{\delta}$ and hence $||T\gamma|| \dot{\langle} \dot{\epsilon}$. The linearity of T will give

$$\|T_x\| \doteq \frac{2\|x\|}{\delta} \|T_y\| < \frac{2\dot{\varepsilon}}{\delta} \|x\|.$$

Set $M \doteq \frac{2\dot{\varepsilon}}{\dot{\delta}}$ to complete the proof. (*iv*) \rightarrow (*iii*). Taking a sequence (x_n) that converges to 0, then $||x_n|| \rightarrow \dot{0}$ and hence $||Tx_n|| \rightarrow \dot{0}$. (*iv*) \rightarrow (*v*). The equivalence can be done by taking $x \in {}_{\mathcal{V}}B_X$. (*v*) \rightarrow (*iv*). Let $T({}_{\mathcal{V}}B_X)$ be a bounded set, i.e., there is $M \ge \dot{0}$ such that $||T({}_{\mathcal{V}}B_X)|| \le \dot{M}$. Put $\gamma = \frac{x}{||x_n||} \in {}_{\mathcal{V}}B_X$, then

$$||Tx|| = ||x||||Ty|| \le M||x||$$

and the proof is complete.

Proposition 3 says that the notion of continuity and boundedness of linear operator T are interchangeable. Therefore, the following definition is equivalent to Definition 6.

Definition 7. Let X and Y be ν -normed spaces and $T : X \to Y$ be a linear operator. T is bounded if T(A) is bounded for any bounded set $A \subset X$. B(X, Y) stands for a collection of all bounded linear operators from X into Y.

The equivalence of (*iv*) and (*v*) in Proposition 3 gives a term called *operator norm* ||T|| which is defined as

$$||T|| = \sup \left\{ ||Tx|| : x \in {}_{\mathcal{V}}B_X \right\}.$$

Indeed, the number ||T|| is the smallest number that satisfies (*iv*). To see this, assume the contrary, that is $\dot{0} \leq M \leq ||T||$. Then, for any $x \in {}_{\mathbf{v}}B_X$

$$||T|| = \sup\left\{ ||Tx|| : x \in {}_{\mathcal{V}}B_X \right\} > M \ge M ||x||$$

which contradicts the boundedness of T.

Theorem 1. Let X be a ν -normed space and Y be a ν -Banach space. Then B(X, Y) is a ν -Banach space.

Proof. It is easy to see that B(X, Y) is a ν -normed space under the operator norm. Let (T_n) be a ν -Cauchy sequence in B(X, Y). Then, for each $x \in X$

$$||T_n x - T_m x|| \le ||T_n - T_m||||x||.$$

Since Y is a v-Banach space, $T_n x$ converges to some element $y \in Y$. Let $Tx = y = v-\lim T_n x$. Then, for any $x \in vB_X$

$$||Tx - T_m x|| \leq ||Tx - T_n x|| + ||T_n x - T_m x||.$$

Taking the supremum of both sides gives $|\dot{T}-T_m\dot{I}| \rightarrow \dot{0}$. Clearly, $T \in B(X, Y)$ and the proof is complete.

Concluding Remark Since $\|\cdot\| \in \mathbb{R}$ and $\|\cdot\| \in \mathbb{R}$, by deploying the isomorphism ι , all the results in this paper are also true for classical normed spaces.

Acknowledgement

The authors thank the reviewers for their meaningful comments and suggestions. The authors also thank OMU Functional Analysis and Function Theory Research Group (OFAFTReG) for constructive discussions.

References

- [1] A. E. Bashirov, E. M. Kurpinar, and A. Özyapıcı, Multiplicative calculus and its applications, *J. Math. Anal. Appl.*, **337** (2008), 36-48.
- [2] D. Binbaşıoğlu, S. Demiriz, and D. Türkoğlu, Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces, J. Fixed Point Theory Appl., 18 (2016), 213-224.
- [3] D. Binbaşıoğlu, On fixed point results for generalized contractions in non-Newtonian metric spaces, *Cumhuriyet Sci. J.*, **43** (2022), 289-293.
- [4] A. F. Çakmak and F. Başar, Some new results on sequence spaces with respect to non-Newtonian calculus, *J. Inequal. Appl.*, **2012**, Article ID 932734, 12 pages.
- [5] A. F. Çakmak and F. Başar, Certain spaces of functions over the field of non-Newtonian complex numbers, *Abstr. Appl. Anal.*, **2014**, Article ID 236124, 12 pages.
- [6] N. Değirmen and B. Sağır, Some new notes on the bicomplex sequence spaces l_p (BC), *J. Fract. Calc. Appl.*, **13** (2022), 66-76.
- [7] N. Değirmen and B. Sağır, Some geometric properties of bicomplex sequence spaces l_p (BC), Konuralp J. Math., 10 (2022), 44-49.
- [8] N. Değirmen and B. Sağır, Some fundamental properties of Banach space l_p (BC (N)) with the *-Norm $\|\cdot\|_{2,l_n(\mathbb{BC}(N))}$, Trans. A. Razmadze Math. Inst., **176** (2022), 183-195.
- [9] M. Grossman and R. Katz, Non-Newtonian Calculus, (Lee Press, Pigeon Cove, Mass, 1872).
- [10] N. Güngör, Some geometric properties of the non-Newtonian sequence $l_p(N)$, *Math. Slovaca.*, **70** (2020), 689-696.
- [11] N. Sager and B. Sağır, On completeness of some bicomplex sequence spaces, *Palestine J. Math.*, **9** (2020), 891-902.