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Abstract
In this paper, we introduce the notion of a directed preserving generator (d.p.g.) from R into R. This
d.p.g. can be used to construct new fields which generally have the same properties as R, except that some
properties are affected by d.p.g. itself. With this new field, a ν-normed space will be formed. Some of the
basic properties of this normed space are also discussed.
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1. Introduction
Sometimes we can discover new things by changing our point of view of something. Classical
Banach spaces are defined as a complete normed space over the field R or C. In this paper, we will
use a new field called ν-non-Newtonian field νR which has similar properties to R. Using this νR
which will be constructed in this section, then we can define ν-non-Newtonian normed spaces over
ν-non-Newtonian field νR. To simplify, we will just state the function needed. So, if the function
is ν, the notion ν-normed spaces over a field νR will be used if it is not ambiguous.

This change in point of view was started by Grossman and Katz by moving the field R by
using a function called a generator. A function α : R → R is called a generator function if it is an
injective function [9]. Many studies have used generators with this definition in several fields such
as calculus [1], α-fixed point theory [2, 3], and some special α-Banach spaces [4, 5, 6, 7, 8, 10, 11].
Unfortunately, the injective nature of this generator is not strong enough to guarantee that the field
αR generated by α has similar properties as its counterpart R. Therefore, we define the stronger
generator as follows.

Definition 1. A function ν : R → R is called a directed preserving generator (g.d.p) if the function ν
satisfies the following conditions:
(i) one-one and continue,
(ii) for any a, b ∈ R and a ≤ b, we have ν(a)≤̇ν(b) in νR, and
(iii) for any a, b ∈ R, there exists ν(c) ∈ νR such that ν(a)≤̇ν(c) and ν(b)≤̇ν(c) in νR.

The existence of c ∈ R in (iii) is just the implication of (i) and (ii). Using this new definition, the
function α : R → R which is defined as

α (x) =
{

0, if x = 0
1
x , otherwise

is a generator that fails to be a g.d.p.
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The continuity of g.d.p. ν will guarantee the existence of 0̇ and 1̇, where 0̇ and 1̇ respectively
denote the addition identity and multiplication identity, i.e., ν (0) = 0̇ and ν (1) = 1̇. In the case
ν = exp, clearly 0̇ = 1 and 1̇ = e. The property (ii) of d.p.g. ensures that the order in νR does not
reverse the original order in R, while (iii) ensures that there is always an element in νR greater than
ν (a) ,ν(b) ∈ νR , i.e., the elements of νR (depend on g.d.p. ν) are going to –∞ and +∞.

Before going any further, for any ȧ, ḃ ∈ νR, the arithmetics applied in a set of scalars νR is
defined as follows

ȧ+̇ ḃ = ν
(
ν–1 (ȧ) + ν–1

(
ḃ
))

ȧ–̇ ḃ = ν
(
ν–1 (ȧ) – ν–1

(
ḃ
))

ȧ×̇ ḃ = ν
(
ν–1 (ȧ) × ν–1

(
ḃ
))

ȧ/̇ ḃ = ν
(
ν–1 (ȧ) /ν–1

(
ḃ
))

|̇ȧ|̇ = ν
(∣∣∣ν–1 (ȧ)

∣∣∣) =


ȧ , if ȧ>̇0̇
0̇ , if ȧ=̇0̇
0̇–̇ȧ, if ȧ<̇0̇

·
√

ȧ2̇ = |̇ȧ|̇

ȧṗ = ν
([

ν–1 (ȧ)
]p)

Using these arithmetics, for any ȧ, ḃ, ċ ∈ νR and a d.p.g. ν we have

ȧ+̇
(

ḃ+̇ċ
)

= ν
(
ν–1 (ȧ) + ν–1

(
ḃ+̇ċ

))
= ν

(
ν–1 (ȧ) + ν–1

[
ν
(
ν–1

(
ḃ
)

+ ν–1 (ċ)
)])

= ν
(
ν–1 (ȧ) + ν–1

(
ḃ
)

+ ν–1 (ċ)
)

= ν
(
ν–1

[
ν
(
ν–1 (ȧ) + ν–1

(
ḃ
))]

+ ν–1 (ċ)
)

= ν
(
ν–1

[
ȧ+̇ḃ

]
+ ν–1 (ċ)

)
=

(
ȧ+̇ḃ

)
+̇ċ,

and

ȧ+̇0̇ = ν
(
ν–1 (ȧ) + ν–1 (0̇

))
= ν

(
ν–1 (ȧ) + 0

)
= ν

(
ν–1 (ȧ)

)
= ȧ.

Similarly, it is easy to see that νR is an abelian group under addition. Since

ȧ×̇ 1̇ = ν
(
ν–1 (ȧ) × ν–1 (1̇

))
= ν

(
ν–1 (ȧ)

)
= ȧ
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and

ȧ×̇
(

ḃ+̇ċ
)

= ν
(
ν–1 (ȧ) × ν–1

(
ḃ+̇ċ

))
= ν

(
ν–1 (ȧ) × ν–1

[
ν
(
ν–1

(
ḃ
)

+ ν–1 (ċ)
)])

= ν
([

ν–1 (ȧ) × ν–1
(

ḃ
)]

+
[
ν–1 (ȧ) × ν–1 (ċ)

])
= ν

(
ν–1

[
ν
(
ν–1 (ȧ) × ν–1

(
ḃ
))]

+ ν–1
[
ν
(
ν–1 (ȧ) × ν–1 (ċ)

)])
= ν

(
ν–1

[
ȧ×̇ḃ

]
+ ν–1 [ȧ×̇ċ

])
=

[
ȧ×̇ḃ

]
+̇
[
ȧ×̇ċ

]
,

some routine calculations will show that νR is a field. Indeed, the properties of d.p.g. assure that νR
is a complete field. Therefore, νR can be used to form a new kind of normed space.

2. ν-Normed spaces
The previous section shows that there are new fields that can be formed from R. If we can find an
isomorphism from R onto νR, then we can form ν-normed spaces over νR.

Let ν and µ be d.p.g. and define an isomorphism ι : µR → νR as ι (x) = ν
(
µ–1 (x)

)
. Then for

any ȧ, ḃ ∈ µR

ι
(

ȧ+̇ḃ
)

= ν
(
µ–1

(
ȧ+̇ḃ

))
= ν

(
µ–1

[
µ
(
µ–1 (ȧ) + µ–1

(
ḃ
))])

= ν
(
µ–1 (ȧ) + µ–1

(
ḃ
))

= ν
(
µ–1 (ȧ)

)
+̈ν

(
µ–1 (ȧ)

)
= ι (ȧ) +̈ι

(
ḃ
)

and

ι
(

ȧ×̇ḃ
)

= ν
(
µ–1

(
ȧ×̇ḃ

))
= ν

(
µ–1

[
µ
(
µ–1 (ȧ) × µ–1

(
ḃ
))])

= ν
(
µ–1 (ȧ) × µ–1

(
ḃ
))

= ν
(
µ–1 (ȧ)

)
×̈ν

(
µ–1 (ȧ)

)
= ι (ȧ) ×̈ι

(
ḃ
)

.

Since µR and νR are fields, we have ι
(

ȧ–̇ḃ
)

= ι (ȧ) –̈ι
(

ḃ
)

and ι
(

ȧ/̇ḃ
)

= ι (ȧ) /̈ι
(

ḃ
)

for any ḃ ̸= 0̇.
Considering the properties of d.p.g. ν and µ, we conclude that ι(x) is a field isomorphism. If µ is an
identity mapping, i.e. µ (x) = x, and ν be any d.p.g, then ι is an isomorphism from R onto νR.
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Now we are ready to discuss ν-normed space X. Using the isomorphism defined above, for any
x, y ∈ X we have

ι (λ||x|| + ||y||) = λ×̇|̇|x|̇|+̇|̇|y|̇|.

Therefore, the followings are hold
(i) |̇|x|̇|=̇0̇ implies ||x|| = ι–1

(
|̇|x|̇|

)
= ι–1 (0̇

)
= ι–1 (ν (0)) = 0 and by the classical normed space rule we

get x = 0 ∈ X. On the contrary, for x = 0, |̇|0|̇| = ι (||0||) = 0̇,
(ii) |̇|λ×̇x|̇|=̇ι (||λx||) =̇ι (|λ| ||x||) =̇|̇λ|̇×̇ι (||x||) =̇|̇λ|̇×̇|̇|x|̇|,
(iii) |̇|x+̇y|̇|=̇ι (||x + y||) ≤̇ι (||x|| + ||y||) =̇|̇|x|̇|+̇|̇|y|̇|.

These facts give the following definition

Definition 2. Let X be a vector space over the field νR. The function |̇| · |̇| : X → νR+ is called a ν-norm
on X if it satisfies
(i) |̇|x|̇|≥̇0̇ and |̇|x|̇|=̇0̇ if and only if x = 0,
(ii) |̇|λ×̇x|̇|=̇|̇λ|̇×̇|̇|x|̇|,
(iii) |̇|x+̇y|̇|≤̇|̇|x|̇|+̇|̇|y|̇|
for all x, y ∈ X and λ ∈ νR. The ordered pair

(
X, |̇| · |̇|

)
is called ν-normed space.

If the context being discussed is clear, then X will be preferred over
(

X, |̇| · |̇|
)

. By using property
(iii) in the definition or directly using the isomorphism ι, for all x, y ∈ X we have

|̇|x|̇|=̇ι (||x||) ≤̇ι (||x–̇y|| + ||y||) =̇|̇|x–̇y|̇|+̇|̇|y|̇|.
Similarly

|̇|y|̇|=̇ι (||y||) ≤̇ι (||y–̇x|| + ||x||) =̇|̇|x–̇y|̇|+̇|̇|x|̇|.
Therefore

|̇ |̇|x|̇|–̇|̇|y|̇| |̇ =̇ max
{

|̇|x|̇|–̇|̇|y|̇|, |̇|y|̇|–̇|̇|x|̇|
}

≤̇ |̇|x–̇y|̇|.

The last inequality shows that the function x 7→ |̇|x|̇| is a ν-continuous function. Furthermore,
for any x, x0, y, y0 ∈ X and λ, λ0 ∈ νR

|̇| (x+̇y) –̇ (x0+̇y0) |̇|≤̇|̇|x–̇x0 |̇|+̇|̇|y–̇y0 |̇|
and

|̇|λx–̇λ0x0 |̇| ≤̇ |̇|λx–̇λx0 |̇|+̇|̇|λx0–̇λ0x0 |̇|

=̇ |̇λ|̇×̇|̇|x–̇x0 |̇|+̇|̇|x0 |̇|̇|λ–̇λ0 |̇.

The continuity of a ν-norm function implies that the mappings (x, y) 7→ x+̇y and (λ, y) 7→ λ×̇y
are ν-continuous from X into X. After knowing the ν-continuity of these mappings, it is natural to
define the convergence of sequences in ν-normed spaces. Note that while discussing some concepts
related to sequences, since we use N as a directed set, it must be understood that the natural numbers
being used are in the original order, not as outputs of d.p.g. ν.
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Definition 3. Let (xn) be a sequence in ν-normed space X. The sequence (xn) is said to be ν-Cauchy if
for any ε̇>̇0̇, there is Nε̇ ∈ N such that |̇|xn–̇xm |̇|<̇ε̇ whenever n, m≥̇Nε̇ . The sequence (xn) ν-converges to
an element x ∈ X if for any ε̇>̇0̇, there is Nε̇ ∈ N such that |̇|x–̇xn |̇|<̇ε̇ whenever n≥̇Nε̇. In this case, x is
called ν-limit point of (xn) and denoted by ν-lim (xn) = x.

The previous discussions show that we can use the ν-norm function to form the topology for
a vector space X with F = νR. The elements of this ν-norm topology are any neighborhoods of
x ∈ X.

Definition 4. Let X be ν-normed space and x ∈ X. The closed ball centered at x with a radii ṙ>̇0̇ is the
set

{
y ∈ X : |̇|x–̇y|̇|≤̇ṙ

}
and the open ball is the set

{
y ∈ X : |̇|x–̇y|̇|<̇ṙ

}
. The sphere with a center at x

and a radii ṙ is the set
{

y ∈ X : |̇|x–̇y|̇|=̇ṙ
}

.

If x = 0 and ṙ = 1, then they are called a unit closed ball, unit open ball, and unit sphere which
are respectively denoted by νBX , νBX , and νSX .

Definition 5. A ν-normed space is ν-Banach (complete) space if any ν-Cauchy sequence in X ν-
converges to an element x ∈ X.

Çakmak and Başar [4] showed that some sequence spaces of scalars are Banach space with d.p.g.
ν = exp. As stated before, this result generally doesn’t hold for any generator, unless satisfies d.p.g.
conditions.

Let X be a vector space over a field νR, A ⊂ X, x, y ∈ A, and λ ∈ νR. If λ ∈
(
0̇, 1̇

)
and

λx+̇
(
1̇–̇λ

)
y ∈ A, then A is called a convex set. A is a balanced set if for any |̇λ|̇≤̇1̇, we have λA ⊂ A. If

for any z ∈ X, there is λz>̇0̇ such that z ∈ βA whenever β>̇λz, then A is called absorbing.

Proposition 1. Any ball in a ν-normed space is convex. Furthermore, if the ball is centered at the origin,
then the ball is balanced and absorbing.

Proof. Let νBṙ (x) be any ball centered at x with a radius ṙ. Take any y, z ∈ νBṙ (x) and 0̇<̇λ<̇1̇, then

|̇|λy+̇
(
1̇–̇λ

)
z–̇x|̇| =̇ |̇|λy+̇

(
1̇–̇λ

)
z–̇λx–̇

(
1̇–̇λ

)
x|̇|

=̇ |̇|λ (y–̇x) +̇
(
1̇–̇λ

)
(z–̇x) |̇|

≤̇ λ|̇| (y–̇x) |̇|+̇
(
1̇–̇λ

)
|̇| (z–̇x) |̇|

≤̇ λṙ+̇
(
1̇–̇λ

)
ṙ.

Therefore, λy+̇
(
1̇–̇λ

)
z ∈ νBṙ (x).

Now, take a ball νBṙ (0) and |̇λ|̇≤̇1̇. Then, for any y ∈ νBṙ (0), we get |̇|λy|̇|≤̇|̇|y|̇| and hence λy ∈

νBṙ (0). This shows that νBṙ (0) is a balanced set. Indeed, for any x ∈ X and β>̇ |̇|x|̇|
ṙ , then x ∈ βνBṙ (0).

Thus νBṙ (0) is absorbing.

Let A be any subset of a ν-normed space X. The closure of A, denoted by A, is an intersection
of all closed sets in X containing A. It is well known that A contains all ν-limit points. Since for
any x, y ∈ X and x ̸= y, we can find ṙ>̇0̇ such that νBṙ (x) ∩ νBṙ (y) = ∅ which shows that ν-norm
topology is Hausdorff, and the ν-limit point is unique. The interior of A is the union of all open
subsets of A, i.e., the largest open set containing A and denote by A◦

.

Proposition 2. Let A be any convex subset of a ν-normed space X. Then A and A◦ are convex sets.
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Proof. Let x, y ∈ A, xn → x and yn → y. Then, for any λ ∈
(
0̇, 1̇

)
|̇|λx+̇

(
1̇–̇λ

)
y–̇λxn+̇

(
1̇–̇λ

)
yn |̇|≤̇λ|̇|x–̇xn |̇|+̇

(
1̇–̇λ

)
|̇|y–̇yn |̇|

and hence λxn+̇
(
1̇–̇λ

)
yn → λy+̇

(
1̇–̇λ

)
x. Therefore, λy+̇

(
1̇–̇λ

)
x ∈ A which shows that A is a

convex set.
Now, let x, y ∈ A◦

. Then, for any λ ∈
(
0̇, 1̇

)
λx+̇

(
1̇–̇λ

)
y ∈ λA

◦
+̇
(
1̇–̇λ

)
A

◦
⊂ A.

Since A is a convex set, it follows that A◦
is convex.

3. Bounded operators
This section will discuss the mappings between ν-normed space X and Y. It is well known that a
mapping T : X → Y is linear if T (x+̇y) = Tx+̇Ty and T (λx) = λT (x) for any x, y ∈ X and λ ∈ νR.
From elementary calculus, the mapping f : X → Y is said to be continuous if, for an arbitrary ε > 0,
there is δ = δε > 0 such that

∣∣f (x) – f (y)
∣∣ < ε whenever

∣∣x – y
∣∣ < δ. Since we can form a ν-norm

topology for ν-normed spaces X and Y, we can define the continuous linear operator as in the
following definition.

Definition 6. Let X and Y be ν-normed spaces and T : X → Y be a linear operator. T is a continuous
operator if it is continuous between X and Y, where X and Y are considered topological spaces under ν-norm
topology.

Note that a subset A of a ν-normed space X is bounded if |̇|x|̇|≤̇M for any x ∈ A and M<̇∞, i.e.
A ⊂ νBM (0) for a large M.

Proposition 3. Let X and Y be ν-normed spaces and T : X → Y be a linear operator. The following
conditions are equivalent:
(i) T is continuous,
(ii) T is continuous at 0,
(iii) T is uniformly continuous,
(iv) There is a constant M>̇0̇ such that

|̇|Tx|̇|≤̇M |̇|x|̇|

for all x ∈ X.
(v) T(νBX ) is a bounded set in Y.

Proof. (i) → (ii) is obvious.
(ii) → (i). Let (xn) be any sequence ν-converges to x ∈ X. Since T continuous at 0,

|̇|Tx–̇Txn |̇|=̇|̇|T (x–̇xn) |̇| → 0̇,

or Txn → Tx. Thus, T is a continuous operator.
(ii) → (iii). The linearity and continuity of T at 0 imply that for any ε̇>̇0̇, there is δ̇=̇δ̇ε̇ε̇>̇0̇ such that
|̇|Tx|̇|<̇ε̇ whenever |̇|x|̇|<̇δ̇. Since X is a ν-normed space, there is x1, x2 ∈ X such that x1 = x2. Thus,
|̇|Tx1–̇Tx2 |̇|<̇ε̇ whenever |̇|x1–̇x2 |̇|<̇δ̇. Since x is arbitrary and δ̇ just depend on ε̇, T is a uniformly
continuous operator.
(iii) → (i) is obvious.
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(iii) → (iv). |̇|x|̇|<̇δ̇ implies |̇|Tx|̇|<̇ε̇. For any x ∈ X, put y = δ̇

2|̇|x|̇|
x. Then |̇|y|̇|<̇δ̇ and hence |̇|Ty|̇|<̇ε̇.

The linearity of T will give

|̇|Tx|̇|=̇
2|̇|x|̇|
δ̇

|̇|Ty|̇|<̇
2ε̇
δ̇

|̇|x|̇|.

Set M=̇ 2ε̇
δ̇

to complete the proof.

(iv) → (iii). Taking a sequence (xn) that converges to 0, then |̇|xn |̇| → 0̇ and hence |̇|Txn |̇| → 0̇.
(iv) → (v). The equivalence can be done by taking x ∈ νBX .
(v) → (iv). Let T(νBX ) be a bounded set, i.e., there is M>̇0̇ such that |̇|T(νBX )|̇|<̇Ṁ. Put y = x

|̇|xn |̇|
∈

νBX , then
|̇|Tx|̇|=̇|̇|x|̇||̇|Ty|̇|≤̇M |̇|x|̇|

and the proof is complete.

Proposition 3 says that the notion of continuity and boundedness of linear operator T are
interchangeable. Therefore, the following definition is equivalent to Definition 6.

Definition 7. Let X and Y be ν-normed spaces and T : X → Y be a linear operator. T is bounded if
T(A) is bounded for any bounded set A ⊂ X. B(X, Y) stands for a collection of all bounded linear operators
from X into Y.

The equivalence of (iv) and (v) in Proposition 3 gives a term called operator norm |̇|T |̇| which is
defined as

|̇|T |̇| = sup
{

|̇|Tx|̇| : x ∈ νBX
}

.

Indeed, the number |̇|T |̇| is the smallest number that satisfies (iv). To see this, assume the contrary,
that is 0̇≤̇M<̇|̇|T |̇|. Then, for any x ∈ νBX

|̇|T |̇| = sup
{

|̇|Tx|̇| : x ∈ νBX
}

>̇M≥̇M |̇|x|̇|

which contradicts the boundedness of T.

Theorem 1. Let X be a ν-normed space and Y be a ν-Banach space. Then B(X, Y) is a ν-Banach space.

Proof. It is easy to see that B(X, Y) is a ν-normed space under the operator norm. Let (Tn) be a
ν-Cauchy sequence in B(X, Y). Then, for each x ∈ X

|̇|Tnx–̇Tmx|̇|≤̇|̇|Tn–̇Tm |̇||̇|x|̇|.

Since Y is a ν-Banach space, Tnx converges to some element y ∈ Y. Let Tx=̇y=̇ν-limTnx. Then, for
any x ∈ νBX

|̇|Tx–̇Tmx|̇|≤̇|̇|Tx–̇Tnx|̇|+̇|̇|Tnx–̇Tmx|̇|.

Taking the supremum of both sides gives |̇|T–̇Tm |̇| → 0̇. Clearly, T ∈ B(X, Y) and the proof is
complete.

Concluding Remark Since |̇| · |̇| ∈ νR and || · || ∈ R, by deploying the isomorphism ι, all the results
in this paper are also true for classical normed spaces.
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